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Summary

A near-wall two-equation model for compressible flows is proposed. The model is

formulated by relaxing the assumption of dynamical field similarity between compressible and

incompressible flows. A postulate is made to justify the extension of incompressible models to

account for compressibility effects. This requires formulating the turbulent kinetic energy equ_ttion

in a form similar to its incompressible counterpart. As a result, the compressible dissipation

function has to be split into a solenoidal part, which is not sensitive to changes of compressibility

indicators, and a dilatational part, which is directly affected by these changes. This procedure,

therefore, isolates terms with explicit dependence on compressibility so that they can be modeled

accordingly. An equation that governs the transport of the solenoidal dissipation rate with

additional terms that are explicitly dependent on compressibility effects is derived similarly. A

model with an explicit dependence on the turbulent Mach number is proposed for the dilatational

dissipation rate. Thus formulated, all near-wall incompressible flow models could be expressed in

terms of the solenoidal dissipation rate and straight-forwardly extended to compressible flows.

Therefore, the incompressible equations are recovered correctly in the limit of constant density.

The two-equation model and the assumption of constant turbulent Prandtl number are used to

calculate compressible boundary layers on a fiat plate with different wall thermal boundary

conditions and free-stream Mach numbers. The calculated results, including the near-wall

distributions of turbulence statistics and their limiting behavior, are in good agreement with

measurements. In particular, the near-wall asymptotic properties are found to be consistent with

incompressible behavior;, thus suggesting that turbulent flows in the viscous sublayer are not much

affected by compressibility effects.
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1. Introduction

Density variation in a turbulent flow can come from different sources. Some of these are:

(i) isothermal mixing of gases of different density, (ii) strong temperature gradient in a

homogeneous fluid, (iii) reactive flows and (iv) compressibility effects in high speed flows. Each

of these sources gives rise to specific aspects that require modeling ff the governing equations are

to be solved. This study makes an attempt to address the last source; that is, the modeling of high

speed compressible turbulent flows.

Most studies on compressible turbulent flow modeling 1-9 invoke the Morkovin postulate I0

to justify the direct extension of the incompressible models to compressible flows. The postulate

was formulated based on early experiments on compressible boundary layers along adiabatic walls

and compressible wakes, and essentially suggested that the dynamical field in a compressible flow

behaves like an incompressible one. This postulate was used by numerous researchers to assure

that compressibility effects can be accounted for directly by the variable mean density in the

governing equations alone. In other words, the influences of fluctuating density on turbulence

mixing are essentially assumed to be negligible. The validity and extent of Morkovin's postulate

were reviewed by Bradshaw 2 and he noted that the postulate is appropriate for flows where density

fluctuations are moderate. Therefore, the postulate is not valid for hypersonic boundary layers,

where the Mach number is five or greater, and for flows with strong pressure gradient effects,

such as shock-turbulent-boundary-layer interactions. The latter point was confirmed by the studies

of Wilcox and Alber 1 and Bradshaw 11 and led to proposals to have the effects of pressure-

dilatation correlation modeled in the governing equations 12. A more recent study where density

fluctuations are also considered has been given by Speziale and Sarkar 13. Besides these

modifications, all turbulent compressible flow modeling rely on incompressible models.



Two sources of difficulties arise when incompressible turbulence models are extended to

compressible flows. One is due to compressibility itself and another is associated with the

turbulence phenomena. In compressible flows, the governing equations are coupled and

temperature cannot be considered as a passive scalar. As a result, all other thermodyn_u'nic

variables adopt new roles. Therefore, mathematically, compressible flows cannot be considered as

straightforward extension of incompressible flows. Furthermore, pressure is only a force term in

incompressible flows and all disturbances propagate at infinite speed. On the other hand, pressure

also supports finite velocity propagation of disturbances in compressible flows. Other

complications come from the variable mean density, which contributes to increased non-linearity of

the governing equations, and the fluctuating density, which causes the closure problem to become

more difficult.

The second source of difficulties has to do with turbulence mixing. Here, even for

incompressible flows, many problems remain to be resolved 14"17, especially when the flow is

unsteady and/or three-dimensional 18. However, among the many problems associated with

turbulence modeling, one stands out as most fundamental and urgently needs attention. This is the

treatment of the near-wall flOW 17. Conventional approach is to invoke the wall function

assumptions; thus implying that near-wall turbulence is in local equilibrium. Even for simple wall

shear flows, the assumption is not quite valid because near-wall turbulence is not in local

equilibrium. Consequently, a low-Reynolds-number treatment is necessary in order to obtain

results that agree with measurements in the near-wall region 17,19"21. The need for near-wall

treatment of flows with heat and mass transfer has also been pointed out 22"25. This problem is

expected to be more acute in compressible flow modeling 13 where the non-linearity of the

governing equations are further compounded by the variable mean density.

The present objective is to model near-wall compressible turbulent flows where the

coupling between velocity and temperature cannot be ignored. As a flu'st attempt, only the
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modelingof theturbulentkineticenergyandits dissipation-rateequationsisconsidered.With the

assumptionof gradienttransport,thetwo-equationmodelcouldbeusedto effectclosureof the

meanflow equations.Sincethetransportequationsfor theheatfluxes andthe temperature

dissipationratearenot modeledandsolved,aconstantturbulentPrandtlnumberis invokedto

relatetheheatfluxesto themomentumfluxes. In view of thisassumption,thepresentapproach

onlyaddressestheissueof compressibilityeffectson turbulentmixingandnotonheattransferand

its interactionwith turbulence.An attempton this latterproblemwill bemadeafterthepresent

modelhasbeenvalidated.



2. Proposed Modeling Approach

With the availability of near-wall models for temperature variance and its dissipation rate 24,

heat fluxes 25, Reynolds-stresses 26 and the dissipation rate of the turbulent kinetic energy 27, the

time is now ripe for their extension to compressible flows. In order to consider the effects of

variable mean density and its fluctuation on turbulence mixing, it is necessary to analyse the exact

equations and propose appropriate models to effect closure. Two approaches are available. One is

to propose totally new models for the terms in the compressible equations, while another is to

attempt to extend the incompressible models to compressible flows in a credible way. Both

approaches involve assumptions that could or could not be verified experimentally. Since the

present knowledge of incompressible flow modeling is quite mature, as a first attempt, it is

expedient to extend these models to compressible flows. This can be accomplished by recasting

the compressible equations in forms similar to their incompressible counterparts so that terms with

explicit dependence on compressibility effects can be isolated separately, and the incompressible

limit can be recovered in a straight forward and correct manner.

Since the turbulent kinetic energy equation or k-equation is obtained by contracting the

Reynolds-stress equations, this means that the recasting of the Reynolds-stress equations should

be attempted first. In other words, the viscous diffusion and dissipation terms in the Reynolds-

stress equations have to be similarly defined as their incompressible counterparts. This suggests

splitting the viscous dissipation function into a solenoidal part, which is not sensitive to changes of

compressibility indicators, and a dilatational part, which is directly affected by these changes 28.

When the Reynolds-stress equations are written in this form, three additional terms that depend

explicitly on compressibility effects are present. The k-equation is then obtained by contracting the

Reynolds-stress equations and its incompressible counterpart is recovered correctly when density

becomes constant and the additional terms vanish identically. An equation that governs the

transport of the solenoidal dissipation rate (e) of the turbulent kinetic energy (k) is derived and



modeled along the line suggested above. Again, additional terms that depend explicitly on

compressibility effects appear in the equation. This equation also reduces correctly to its modeled

incompressible counterpart because the additional terms vanish for constant density flows. All

models proposed for the k and e equations are expressed in terms of this solenoidal dissipation

rate. A model with explicit dependence on the turbulent Mach number proposed by Sarkar et al. 28

for the dilatational dissipation is adopted. Thus formulated, the two-equation model is valid for

compressible flows and approaches its incompressible limit in a straight forward and correct

manner.

The systematic approach described above, if proven successful, could be used to extend

incompressible near-wall models for heat-fluxes, temperature variance and its dissipation rate to

compressible flows. A set of equations governing the transport of incompressible heat fluxes has

been proposed and validated against simple flows with heat transfer 25, while a similar set of

equations for the temperature variance and its dissipation rate 24 has also been validated against

boundary-layer flows. This means that near-wall heat transfer models could also be extended to

compressible flows using the approach proposed above. Until such time, the assumption of a

constant turbulent Prandtl number for near-wall compressible flow is inevitable.

In the following, the compressible equations are first derived, then the near-wall modeling

of the k and E equations are discussed. In section 6, the two-equation model is used to calculate

compressible boundary layers on a flat plate assuming a constant turbulent Prandtl number. The

calculations are carried out for a range of free-stream Mach number and two different wall thermal

boundary conditions. Comparisons with measurements 9.29"31 and other calculations, such as

those obtained using the k-_ model of WilcoxS, are carried out to assess the importance of density

fluctuations on the calculated results and, hence, the validity and extent of Morkovin's hypothesis.
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3. Mean Flow Equations

The compressible mean flow equations are obtained by applying Favre averaging to the

instantaneous Navier-Stokes equations which for Newtonian fluids can be written as:

0-_-+_xi(pui)=0 ,

_p _Xijao ) + ,

=-_-  i Txj

(1)

(2)

(3)

d z
where xij = _3xj + Oxi} - 3 _3-"_'k_ij , (4)

ui is the ith component of the velocity vector, x i is the ith component of the coordinates and p, T,

p, It, x:, Cp are pressure, temperature, density, viscosity, thermal conductivity and specific heat at

constant pressure, respectively. Favre decomposition is applied to all variables except p and p

where conventional Reynolds decomposition is assumed. In other words

m

ui=(Ui)+u i , (5)

T=(@)+O" , (6)

p=_+p' , (7)

p = -if-+ p, , (8)

where u_ and 0" are the Favre fluctuations and p' and p' are the Reynolds fluctuations. If < > is

used to denote Favre-averaged quantities and the overbar the Reynolds-averaged quantities, then

the mean equations for compressible flows can be obtained as follows. The above decompositions

(5)-(8) are substituted into (1)-(4) and the resultant equations are averaged over time. If the

turbulent flow is further assumed to be stationary and the mean momentum equation and the
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Reynolds-stressandturbulentkineticenergy,k = _(uiui>,equationsto bederivedlaterareusedto

simplifythethermalenergyequation,theturbulentmeanflowequationsbecome

_i (P'(UO) = 0 , (9)

I

m

_'+_<z,.> _ . . (10)

+ <tij><Ui) ) - _x i p Cp(O"u;) "_i (u;u;XUj)

(11)

In these equations, _ = _, !¢ = _ and C.p = Cp have been substituted and the mean and fluctuating

stresses are given by

.  <uk>
('_ij> = _ [-"_Xj + "-_-Xi ]" 32- _ Oij

-2 _

The quantity, Cp(O)+ _(Uk>(UQ + k, is the mean total enthalpy (H). Thus written, (9)-(11)

reduce to their incompressible counterparts exactly when density becomes constant.

An order-of-magnitude analysis is carried out on (9) - (11). The result shows that the

underlined terms are of smaller order and, as a first approximation, could be neglected compared to

the terms retained. Thus formulated, the compressible equations are identical to the incompressible

equations and the additional unknowns are the turbulent momentum and heat fluxes, just as in the



incompressiblecase.Thepresentapproachproposesto closetheseequationsassuminggradient

transport.As afn-stattempt,anear-walltwo-equationk-emodelisusedtodeterminetheturbulent

viscosityandaconstantturbulentPrandtlnumberis invokedtorelateturbulentmomentumandheat

fluxes.Therefore,thepresentmodelcannotfully accountfor theeffectsof densityfluctuationon

turbulentheattransfer.



4. Modeling of the Turbulent Kinetic Energy Equation

The Favre-averaged transport equation for the Reynolds stresses _-(u_ui) could be similarly

derived as in the incompressible case 16. That is, the ith fluctuating velocity equation is obtained by

subtracting the mean momentum equation from the instantaneous equation. Repeat the same

procedure to obtain the jth fluctuating velocity equation. The ith fluctuating velocity equation is

then multiplied by the jth fluctuation velocity and vice versa and the two equations are then added

together and averaged over time. Omirfng all the algebra, the final exact equation is:

--
. ' ,. -, ,..,

_)Xk + jk_)xk j" Ui I z- OX k

- _ + uj k ' dXk uj _-'_-k-kj (12)

Symbolically, the above equation can be written as

C U T U (13)

With the exception of Gij and Tij, (13) is similar to its incompressible counterpart 26. For an

N

incompressible flow, u i - 0, and Gij = Tij = 0. Even under this condition, (13) fails to reduce

properly to the incompressible equation given in Ref. 26. The reason lies in the grouping of the

terms (Di'jv - p'¢_j+ Oij_ In order to achieve this incompressible limit correctly, a re-arranging of

the terms in (Di*jv - pei*j + Oij)is necessary. If viscous diffusion and dissipation in compressible

flows are again defined similarly to their incompressible counterparts, or

f -/m m

b bu.u.

D_ - bx k 1_ bXk ' (14)
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u"_ u"
Eij = 2_ _ J

bxk_xk (15)

thenmeterms(DiT-_eTj+ Oij)cant_ re-arrangedto give

"" - • = D"- _-_j- _¢j +Dij " P eij + _)ij ij **ij

whereeieJ= _xj _x-_k * c)xi _)xk]'

(16)

(17a)

(17b)

Note that (16) reduces to its incompressible counterpart exactly when constant fluid properties are

assumed. For compressible flows, an extra term _eicj appears in (16). In addition, three

additional terms are found in _j. The term -ff'e_ is a dilatational term and could be interpreted as

compressible or dilatational dissipation. This term is only important for compressible flows.

It should be pointed out that _j is given by (17b) and, as a result of this particular

partitioning, there are several extra terms resulted from compressibility and variable viscosity.

However, at high Reynolds number, dimensional arguments reveal that these extra contributions

are not important, ff pressure diffusion is further neglected, then D T, "if'eli and _j would assume

the same form as their incompressible counterparts. Therefore, the high-Reynolds-number

incompressible models proposed for these terms 16.32 could be straight-forwardly extended to

compressible flows. However, a model for the compressible dissipation term -9-e_j is required to

complete closure. For high-Reynolds-number flows, this compressible dissipation could be

assumed to be isotropic. As a result, the following model is proposed:
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where

Eicj= _ 5ij Cc

ec=  O Xk/

(18)

The modeling ofe c has been attempted by Sarkar et al.28 They are the first to realize that the

contribution of the dilatational dissipation term is important for supersonic shear flows. A simple

algebraic model, which is based on an asymptotic analysis and a direct numerical simulation of the

simplified governing equations, has been proposed for ec. Their proposal could be modified to

become

ec: oqlVI_e , (19)

where oq is a model constant, M_ = 2k/-6 "2, p'e = _ _--_£] is the dissipation ofk and -d" is the local

mean speed of sound. Therefore, M t is the local turbulent Mach number. It should be pointed out

that Sarkar et al.'s 28 definition of ec is four times larger than the definition given in (19) as a result

of a different splitting of the terms in (16). Consequently, Qt1 should take on a value equal to 1/4

of that suggested in Ref. 28. Based on an analysis of decay of compressible isotropic turbulence,

Sarkar et al. 28 suggested a value of one for their constant. In other words, _1 = 0.25. If _1 is

evaluated based on compressible shear flows, its value would be 0.15. The present study adopts

o_1 = 0.15 for the analyses of boundary-layer flows.

The k-equation is obtained by contracting (12) and making use of (16) and (18) to simplify

the resulting equation which can be written as:

D(ffk)
v D T 1p 1__,. 1 1--c _G 1Dt - Dk + k + ii + 2-i. "2P-eii " _'P Eii + ii + _Tii . (20)

AV

It can be seen that the terms, D_', ¢D_iand -ff'eii, and the coefficient, u i, appearing in Gii and Tii
B

require modeling. Furthermore, when p is assumed to be constant and u i = 0, the last three terms

11



in (20)areidenticallyzeroandtheincompressibleequationisrecoveredexactly.Themodelingof

DT,@ _i and O'l_ii could be accomplished by drawing parallels with their incompressible

counterparts 26,27. However, this requires knowledge of their behavior in the near-wall region.

The near-wall behavior of (20) can be analysed by assuming Taylor series expansions about

the wall for the fluctuating quantities. This analysis is similar to the incompressible case 26 except

that expansions also have to be assumed for p' and 0". The proposed expansions are:

u" = a I y + a 2 y2 + ....

v"--b 1 y+b 2y2+ ....

w" = c I y + c2 y2 + ....

0"=d I y+d 2y2+ ....

p'=el Y+e2y2 + ....

(21)

It should be cautioned that, although the velocity and temperature expansions are physically

correct, the expansion for density is an assumption. As pointed out by Bradshaw II, the

fluctuating temperature and density could not go to zero simultaneously at the wall. Otherwise, it

would lead to a zero wall p'. In general, temperature fluctuation is assumed to be zero at the wall,

while p' is not. Here, the assumption is made that p' also goes to zero at the wall, however, its

value away from the wall is finite. Since p' is taken to be essentially zero over the whole field in

Morkovin's hypothesis 10, the present approach could be viewed as a partial relaxation of that

assumption. Consequently, the proposed model would not be valid for all free-stream Mach

number and wall thermal boundary conditions. Therefore, one of the present objective is to

analyse the validity and extent of the proposed two-equation model.

For incompressible flows, b I = 0 is obtained by imposing the incompressibility condition

and becomes a crucial condition in near-wall analysis. This important condition holds the key to

the present extension of the near-waU incompressible models to compressible flows. In order to

12



showthatb1indeedvanishesundertheseconditions,thecontinuityequationfor p' is fh-st derived,

or

1+ pU k + p'(Uk) + p u k =0. (22)

Expansions (21) are then substituted into the above equation. If (Uk) = 0 at the wall is used, it can

be easily verified that, under the assumption of (21), b I = 0 is still a valid condition for

compressible flows, irrespective of the thermal boundary condition. Therefore, the assumed p'

expansion facilitates the modeling of compressible flows, because all terms in (20) have similar

forms as their incompressible counterparts except the extra _ term which needs to be analyzed.

Using definition (18) for e_, it is easily verified that _i is of order y2. The high-Reynolds-

number model (19) also has similar behavior near a wall Therefore, it is proposed to extend (19)

C

to near-wall flow without modification, while the near-wall balance provided by the exact I?ii is

Ill

taken into consideration by combining it with the Oil term. As for "ff'¢ii, it could be modeled by

following the arguments presented in Refs. 26 and 27 for incompressible flows. In essence, Refs.

26 and 27 argue that the incompressible eli can be set equal to 2e and the near-wall corrections

proposed for eij have little or no effects on the behavior of eli in the region near a wall. This means

that eli in the near-wall region as well as the region away from the wall can be approximated by 2¢.

In view of this, the model for -ifeli can be assumed to be given by 2-ff'e. Based on this model,

equation (15) and expansions (21), it can be easily shown that the leading term ore in the near-wall

region is a constant equal to its wall value Ew. Again, the behavior is similar to the incompressible

case.

Near-wall analysis again shows that turbulent diffusion is a higher order term and its high-

Reynolds-number model could be adopted because it does not affect near-wall balance of the k-

equation. Consistent with the assumption of gradient transport for two-equation models, the

incompressible model for turbulent diffusion of k is extended to compressible flows by writing 1_

13



= O(("_'t/C_k)_k/Oxi)/Oxi, where o k is a constant and _-t is the turbulent viscosity defined by _t =

Cl.tfl.t-ff'k2/e. In this def'mition, CI.t is a model constant while f_ is a damping function to be defined

later. Based on (21), the leading order term ofk in the near-wall region is y2. Since e = ew in this

region, k2/e has to be of order y4. If the shear stress is defined with respect to _-t, then it can be

shown that the leading order term of the shear stress has to be of order y3 in the near-wall region.

Therefore, it follows that 'v-t -- _-t/-ff" is also of order y3 near a wall and this, in turn, leads to a

similar behavior for the modeled I3_ term in the near-wall region. This behavior is consistent with

the behavior of the exact term DTkappearing in (20). In other words, the modeled D_ does not

affect the near-waU balance of (20).

According to (18), _i = 2e'c. As such, the near-wall behavior of the exact _i is not properly

accounted for by the proposed model. In the above discussion, it is argued that the near-wall

behavior of e[i could be modeled together with the term O_. In order to analyse the near-wall

behavior of the combined term (_i + P_), the behavior of Gii and Tii near a wall has to be

studied. The appearance of mean pressure in Gii makes the analysis slightly more difficult.

However, the difficulty could be circumvented by making use of the mean momentum equation

(10). The final analysis shows that the combined (Gii + Tii) term has the following near-wall

behavior; namely,

Gll + TII -.-->O(y 2) ; G33 + T33 --->O(y 2) ; G22 + T22 _ O(y 3) (23)

Iii

This means that, to the lowest order, the near-wall behavior of (_ii + P-_i) is similar to its

incompressible counterpart 26. For incompressible flows, the term, O_i, can be written into a

pressure diffusion part and a pressure redistribution part. Pressure redistribution is identically zero

and since pressure diffusion is relatively small, it is usually neglected. Such is not the case for

compressible flows. The term, _ii, can again be partition into a pressure diffusion part, which

could be neglected, and a term involving pressure-velocity-gradient correlation. This latter term

does not vanish because fluid volume changes as a result of density variation. Therefore, an

14



argumentcouldbemadetomodeltheterm,(O-_i+ _-e_i), to account for dilatational effects only. In

view of this, the following model is proposed, or

-.(_<u_l (24)

where 1, is a model constant.

Gii.

for incompressible flows.

words, u_ =-p'u_ /p.

assumption; namely,

The proposed models still fail to close the k-equation because of the presence of U i in Tii and

Therefore, it is necessary to shed some light on the modeling of u_, which is identically zero
-7

Using Favre averaging, it can be shown that -p'u_ -- pu i In other

Previous proposals for -p'u_ are based on the gradient transport

where op is a model constant. However, a more elaborate way to model the term is to adopt the

proposal,

- _'u; k." "._
u_=----_---=Cp_-E_,uiuj)N , (26)

where Cp is a model constant. Alternatively, the term can also be modeled by

a,

u:=13_p" w_th13=-a_ (e)
' (e) ' p --if- , (27)

where 13equals to unity for an ideal gas.

The near-wall behavior of the modeled k-equation can now be analysed using expansions

(21). It can be easily shown that in the region very near a wall, the modeled k-equation is in

15



balanceup toordery. Consequently,it doesnotneedfurthermodificationstoachieveaconsi:;tent

asymptoticbehaviornearawall.

16



5. Modelling of the Dissipation-Rate Equation

The exact transport equation for the solenoidal dissipation rate (-fie) can be similarly derived

as in the Reynolds-stress equation (12). If the approach of the previous section is adopted, the

various terms in the equation can be grouped into terms that axe essentially similar to their

incompressible counterparts 16. Therefore, this derivation will give an e-equation similar to the

incompressible equation but with three additional terms involving u i and _. If these three terms

are denoted by Sel, Se2 and Se3, the exact compressible equation for _"e can be written as:

--_-= 0xk/_'xk]'_--_ k P(Uke)+2v_xi

j

- 219v ( uk _) 32{U'_ - 2pv( _u." _u." Ou[

_2U7 _2U. _

- 2_ 2 t 1 + S_'l + Se2 + 5_3

_xk _xj _Xk_Xj (28)

m

The term Se3 is too cumbersome to write out in full. It is related to the gradient of V and u i

and is very much like the extra terms in (17). On the other hand, the terms Sel and Se2 axe given

by

Sel=-2V_x--_- _ and Sta= 2v OXkOXj
(29)

w

m

These terms are not only related to the gradient of u i but they are also functions of the gradients of

mean pressure and mean viscous stresses. They are like the terms Gii and Tii in the k-equation and

are explicitly dependent on compressibility effects. Therefore, S_l and Se2 have to be modeled

17



separately 32 just as in the case of the k-equation. The term Se3 can be grouped with the other

terms that need modeling and treated in a manner similar to that in the k-equation.

It has been pointed out that the e-equation is the most difficult to model even for

incompressible flows 13,16,17,26,27,32. The reason being that many of the terms in the exact

equation are either not known or could not be measured accurately at present. Consequently, the

incompressible e-equation is modeled in an ad hoc manner to resemble the k-equation in form so

that the right hand side of the e-equation again consists of four terms; namely, viscous diffusion,

turbulent diffusion, production and destruction of e. The equation is further modified for near-wall

flows by adding an extra destruction term _ so that the modeled equation remains balance as a wall

is approached. There is a lack of measurements in compressible flows, therefore, a rigorous

modeling of the compressible e-equation is not possible at present. An alternative is to extend the

high-Reynolds-number incompressible models to compressible flows and then seek a near-wall

correction to the modeled e-equation along the line suggested in Ref. 27. In view of this, (28) is

not a convenient form to work with. The proposal by Speziale and Sarkar 13 with the dilatational

effects written out explicitly will be more appropriate.

Following Speziale and Sarkar 13, the modeled transport equation for e with a near-wall

correction is written in the simplified form; namely

where Dte is the turbulent transport of e, Pe is the production of e due to deviatoric strains, Ae is

the destruction of ¢ and _ is a near-wall correction for compressible flows. The second last term

on the right hand side of (30) is exact and results from the writing of (28) into the form of _30).

When the dissipation-rate equation is formulated in this form, it is reducible exactly to its

incompressible counterpart and, therefore, the terms D t, Pe and Ae can be modeled by a variable

18



densityextensionof theirincompressiblemodels.

themodelsproposedfor Dt, PeandAe are:

'

PE = " CglP uiu j " 3 0x---'-_

A¢ = Ce2_k,

Following the suggestions of Refs. 13 and 27,

(31 a)

(31b)

(31 c)

where the model constants Cel and C_.e2are the same as those given in Ref. 27 for incompressible

flows and e" = e - ew. It should be noted that the mean dilatational effects are accounted for exactly

by (31 b) for compressible flows and that these models reduce exactly to their incompressible

counterparts when the flow Mach number becomes very small. In addition, the ordering of these

model terms is similar to their incompressible counterparts. Therefore, the near-wall function

can be determined in a manner similar to that used in Ref. 27.

The incompressible form of (30) with model terms given in (31) is identical to that proposed

in Refs. 26 and 27. In these studies, the coincidence condition suggested by Shima 21 was used to

determine _. This is equivalent to requiring the modeled e-equation to achieve balance behavior in

the near-wall region at least up to order y. The approach used to deduce g is to assumed a

functional form for _ with two undetermined model constants. One of the constant can be

determined from near-waU analysis, while the other is evaluated using computer optimization. The

function thus determined has been used in Ref. 27 to calculate flat plate boundary-layer flows

and in Ref. 26 to calculate fully-developed channel and pipe flows. These calculations were

carried out over a wide range of flow Reynolds number. The results were compared with direct

simulation data as well as measurements. Very good agreement has been found for both the

limiting behavior of the turbulence quantities and e when compared to direct simulation data 33-35.
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Furthermore,thetwo-equationmodelcalculationsof Ref.27arefoundto givebetterresultsthan

thoseobtainedby Spezialeet al.36 In view of this success,thesameapproachcanbeusedto

determine_ for compressibleflows.

ThefunctionalformassumedinRef.27is adoptedhere,or

= fw,2P- -N--_- + M , (32)

where fw,2 is a damping function that goes to one at the wall and zero far away from the wall. It is

defined in Ref. 27 as fw,2 = e'fRt/64)2, where R t = k2/'-9¢ is the turbulent Reynolds number. The

function e* is defined as e* = e - 2v-'k/y 2 by generalizing the incompressible definition used in Ref.

27. Similarly, e' is defined with ew specified by e w = 2v (0ql_'/Oxj_w. Once _ is postulated, the

near-wall behavior of (30) and the modeled terms of (31) can be analysed using expansions 121).

If the modeled equation is again required to be in balance up to order y, then it can be easily shown

that N = 2 - C_2 because the mean dilatational terms are of order y. Therefore, to order yO they do

not contribute to _. In Ref. 27, the part involving Ce2 in N is grouped together with M to give M 1

= (Ce2e_/e .2 + M) and its value is determined through computer optimization studies. Again, the

same procedure is followed in the present study to determine M 1.

Finally, to complete closure of the governing equations, gradient transport is assumeal for

the Reynolds stresses and the relation is given by

(33)

In addition, a constant turbulent Prandfl number is assumed so that heat and momentum diffusivity

can be related by Pr t = -fit/fit where fit is the turbulent thermal diffusivity. The damping function

fgt appearing in the definition of _-t can now be defined. In view of the similarity of the present k
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andeequationswith thosefor incompressibleflows, thefit usedin Ref.27 isadoptedhere.

definedas

It is

f)_ = {1 + 3.45//'1_ tanh (y+/115) , (34)

where y+ = yth/-_ is the wall coordinate and ux(x) is the friction velocity. In this definition, y is

taken to be the normal coordinate and x the stream coordinate.
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6. Model Validation

A first step to validate the two-equation model for compressible flows is to apply it to

calculate flat plate boundary-layer flows with different wall boundary conditions and free-stream

Mach numbers. In this initial attempt, heat flux is not modeled separately. Instead, it is related to

momentum flux via the assumption of a constant turbulent Prandtl number. The rationale for doing

this is to carefully assess the assumption made in (21) concerning the expansion for p', whose

validity affects the near-wall analysis used to justify the direct extension of the incompressible

near-wall function _ to compressible flows. By choosing the simplest type of compressible flows

to validate the model, a careful analysis of the validity and extent of the expansion for p' can be

carried out. A second objective of this validation is to determine, if possible, the validity and

extent of Morkovin's hypothesis. In other words, it is hoped to evaluate the Mach number r:mge

and the type of wall thermal boundary conditions in which the effects of fluctuating density can be

neglected in the modeling of the governing equations. Therefore, the experimental data chosen for

comparisons are selected from three different groups; one with adiabatic wall boundary condition

and varying free-stream Mach number, another with constant wall temperature and varying free-

stream Mach number, and f'mally the variations of skin friction with free-stream Mach number and

wall temperature as prescribed by the van Driest II formulae given in Ref. 9. The data for the fin'st

two groups are selected from Ref. 31. They are cases 55010504, 53011302 and 73050504 with

adiabatic wall boundary condition and case 59020105 with constant wall temperature. The free-

stream Mach number (M**) for these cases are 2.244, 4.544, 10.31 and 5.29, respectively. Only

one case with constant wall temperature is selected. The reasons being that the other cases reported

in Ref. 31 are either not accurate as far as the measured skin friction is concerned or the

measurements of the mean velocity and temperature are doubtful.

In the following, the governing equations for compressible flat plate boundary-layer flows

are fur'st presented. Then the calculations and comparisons with data are examined and the validity
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of thetwo-equationmodelis studiedin detail. Finally,themodelperformanceandits proposed

improvementarediscussed.

6. I Governing Equations

Two-dimensional, steady compressible boundary layers on a fiat plate are considered. If the

usual boundary-layer approximations are made, then governing equations (9) - (11), (20) and (30)

can be substantially simplified. For the sake of completeness, the boundary-layer equations in

Cartesian x-y coordinates are listed here as:

- _ -
<u>)÷ (p<v>)=o ,

_<u>_-x +_<v> -- - @+ _,j--@-yj ,

(35)

(36)

a(i-i> a_> _
_ <u) _ + _<v> ay

+ + " _ttl _yyJ' (37)

-<U, _k - _k _ [(_+_tl_yk]+_t/_(U))2__l_.J)+_/))_p ,__ + p (v> ay - ay ok; k'-_'Y/ 3 "k c3x

_z3 + _(E+_°)-_Pk_-_x+-_--y/+u" _-_-yl (38)

[(
.

- K 3 _y
(39)

In writing down these equations, (33) has been used to relate the shear stress to the mean velocity

gradient. It is also noted that Gii is zero for flat plate boundary-layer flows while the only term of

importance in Tii is that given by u'-'r. If (25) is used to evaluate _-;r, then Tii is of order y2 and is
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not importantin thenear-wallregion,whichaccordingto Soet al.27 is bounded by 0 < y+ '_ 5.

The model constants are taken from Refs. 27 and 32 and are given by: CI.t = 0.096, Cel = 1.5, Ce2

= 1.83, a k ---0.75, a¢ = 1.45, a I = 0.15, °10 = 0.5 and y = 0.182. The turbulent Prandtl number

Pr t is specified as 0.9, while Pr is assumed constant and taken to be 0.74. Sutherland and lx_wer

laws are used to evaluate fluid viscosity at an appropriate reference temperature. The constants ¢:rp

and (_1 are determined by calibrating the calculated results against some classic experiments such as

those provided in Refs. 29 and 30. Once determined, they are kept constant for all other

calculations. In fact, the cases to be compared in the next section are different from the cases used

to calibrate ap and (x 1. As for N and M 1, the final choice of values adopted are 2 and 1.5,

respectively, just as in the case of incompressible flows.

The boundary conditions are no slip at the wall for the mean velocities and k, and zero heat

flux or constant wall temperature at the wall for the enthalpy. As for the dissipation rate, its value

at the wall is given by 2v (_/l_-/'dy)2w. At the edge of the boundary layer, the free-stream conditions

are specified for both the mean stream velocity and the enthalpy. In principle, the turbulence

quantities, k and e, should be zero in the free stream. However, in practice, they are assumed to

take on some very small values, of the order of 10-7 , in the free stream. Thus formulated, the

above equations and the appropriate boundary conditions can be solved numerically using the

boundary-layer code developed by Anderson and Lewis 30 and modified by So et al.27.

All measurements used to validate the near-wall two-equation model are drawn from Ref.

31. The calculations arc carried out over the range, 0 < M** < 10, for adiabatic wall boundary

condition and over the range, 0 < @w/Or < 1, for constant wall temperature condition. Here, @w is

the wall temperature and O r is the recovery temperature. It should be pointed out that @w/Or = 1.0

corresponds to adiabatic wall boundary condition while Ow/O r < 1 indicates that the wall is cooled.

Since only mean flow properties arc available from Ref. 31, comparisons are made with these

measured quantities and another set of calculations using the k-t0 model of Wilcox8. All

comparisons are made at the same momentum thickness Reynolds number (R e) as the
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measurements.Thevariationsof skin friction with lVI**and ew/O r are compared with the van

Driest II formulae reported in Ref. 9. In these comparisons, the calculations are carried out at a

fixed Ro as specified in Ref. 9. Finally, an assessment of the effects of compressibility on near-

wall flows is attempted by comparing the near-wall behavior of the calculated turbulence statistics

for the different cases investigated.

6.2 Comparisons with Data

The results are organized in the following manner for presentation. Mean stream velocities

are normalized by ux to give u + and they are plotted versus In Y+w(Fig. 1), where Y+wis defined as

uxy/-9 w. On the other hand, mean temperatures are normalized by O**, the free-stream

temperature, and are shown versus y/8 (Fig. 2),where 8 is the boundary layer thickness defined as

the location of y in which <U>/U** = 1.0 as specified by the measurements. Here, U** is the free-

stream velocity. Plots for the turbulence properties, k + = k/u 2, e + = e_'/u_, -u'_

= -_/u_ and -'0v + = -"Ov/U**@**,are presented in terms of Y+wand y/8. Near-wall behavior of k+,

e+, -uv''-+ and -0v + (Figs. 3 - 6) are discussed first, then the distributions of k+ and -_"v+ versus y/5

(Figs. 7 and 8) are examined. In Figs 7 and 8, 8 is not interpreted from measurements; rather it is

evaluated at the y location where <U>/U** = 0.9974. Only the budget of k in the near-wall region

for case 73050504 (M** = 10.31 and @w/O r = 1.0) is presented (Fig. 9) because the k budget_ for

the other cases are essentially similar to that for case 73050504. The effects of Mach number on

the asymptotic behavior of k are examined by plotting ak versus M** (Fig. 10), where ak is the

+ = 2a k.leading coefficient in the expansion of k + in terms of Y+w" According to Ref. 27, e w

Therefore, by examining the behavior of ak versus M**, the variation of _ with Mach number is

also evident. Other asymptotic properties are tabulated in Table 1 for comparison. The effects of

Reynolds number on the calculated results are also investigated for the cases 53011302 and

59020105 (Figs. 11 and 12). Finally, the effects of IVI**on the skin friction coefficient, Cf =

2xw/'ff'**U2**, is compared in Fig. 13 with the van Driest II result 9 for adiabatic wall boundary
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condition.As for thecaseof CfversusO_Or for aconstantIVl**,theresultsarelistedin Table2

for comparisonwith thevanDriestH dataobtainedfromRef.9.

Twoversionsof thepresentk-emodelareusedtocalculatetheboundary-layerflows. One

designatedk-emodel/1solvesthek andEtransportequationsasgivenin (38)and(39). The

seconddesignatedk-emodel/2solves(38) and(39) with all additionalcompressibleterms

neglected.In otherwords,thetwo-equationmodelfor k-emodel/2is adirect variabledensity

extensionof thetwo-equationincompressiblemodelof Ref.27. Thesecalculationscanbeusedto

evaluatethe validity andextentof Morkovin's hypothesisand the importanceof havingan

asymptoticallyconsistentnear-waUcorrectionfor two-equationmodels.

Four setsof u+resultsareshownin Figs. la - ld. Also shownin the figuresare the

calculatedandmeasuredCfandtheCf determinedfrom thevanDriestII formulaof Ref.9. The

log-lawisshowninFig. la to illustrate the log region of the calculated and measured flows. It can

be seen that Cf is predicted correctly by all three models with a maximum error of less than 5%.

For the cooled wall case, the measured Cf is substantially higher than the van Driest II value and,

according to Ref. 31, it is not as accurate as the measured Cf for the other cases studied. The

model calculations are in good agreement with the van Driest II value for this case. Calculated u +

profiles from k-e model/1 and k-e model/2 correlate well with measurements, even for the lvI**=

10.31 case (Fig. lc). This means that the present k-e models are quite valid for compressible

flows up to M** = 10. The models represent improvements over existing models whose

predictions are correct only for lVI**< 5 (see e.g. Ref. 37). Since most existing models are direct

variable density extensions of conventional near-wall two-equation incompressible models and

most of these incompressible models do not have an asymptotically consistent near-wall correction,

the discrepancies display by these models for M** > 5 is understandable. Present results show

that, if the near-wall correction is asymptotically consistent, the incompressible models can be

straight-forwardly extended to compressible flows with a free-stream Math number as high as 10.
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It seemsthatk-emodel/2givesabettercorrelationwithvelocitymeasurements(Figs.lc and

ld) andtherebysuggeststhattheadditionalcompressibletermsin (38)and(39)arenot important.

However,anexaminationof themeantemperatureresultstendsnot to supportthisconclusion.

Furtherevidencethatanasymptoticallyconsistentnear-wallcorrectionis importantcanbegleaned

from thepredictionsof thek-comodel. As M**increases,thediscrepanciesbetweenpredictions

andmeasurementsalsoincrease.Forlow M**,theslopeof thepredictedlog-lawascalculatedby

thek-o)modelis aboutthesameastheslopeof the log-lawshownin Fig. la. However.the

predictedslopeincreasesasM**increases.Thesameisalsotruefor thecooledwall casewherethe

u+profile is notshownin Fig. ld but is shownin Fig. 12awhentheeffectof Reynoldsnumber

areanalysed.Thisbehavioris notobservedin boththek-emodel/1andk-emodel/2predictions,

however.

The meantemperatureprofile comparisonsareshownin Figs. 2a - 2d. As expected,

predictionsby the k-c0modelcomparelessfavorablywith measurements.Here again, the

predictionsof thek-c0modelareshownin Fig. 12bratherthanin Fig. 2d. This is eventruefor

low free-streamMachnumber(Fig.2a). As M**increases,discrepanciesbetweenmeasurements

andk-o)predictionsalsoincrease.Ontheotherhand,theagreementbetweenthek-8model/1

predictionsand dataimprovesasM** increases.This is not truefor k-e model/2wherethe

disagreementwithdataisquitesubstantialatM**= 10.31(Fig.2c). Thepredictionsof thecooled

wallcase(Fig.2d)tell adifferentstory. It seemsthatk-emodel/2givesanoverallbetterprediction

of thecooledwall casecomparedto thatof k-emodel/1(Figs. ld and2d). Thefollowing three

reasonscouldbeput forwardtoexplainthisbehavior.Firstly,thep' expansionmaynotbetotally

valid for constantwall temperatureboundarycondition. Secondly,theproposedcompressible

modelsmaybemoreapplicablefor adiabaticwall boundarycondition.Thirdly,theassumptionof

aconstantturbulentPrandtlnumbermaynotbecorrect.
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The near-walldistributionsof k+ for thefour casesare shown in Figs. 3a - 3d. Only the

predictions of the k-8 model/1 and k-c0 model are compared. The calculations of k-e model/", are

not shown; instead, the limiting behavior of k +, -uv + and -0v + is tabulated in Table 1 for

comparison. In general, the predictions of the k-co model are substantially lowered than those of

the k-e model/1. The peaks are about 40% lower than those predicted by the k-¢ model/1 and the

locations where the peaks occur are calculated to be further away from the wall than the k-E

model/1 predictions. According to the k-e model/1 predictions, the peak of k + decreases as Moo

increases. The decrease is more than 20% over a Mach number range of 10. On the other hand, a

slight cooling of the wall at an M_ of 5.29 causes the peak of lc+ to decrease to the same level as

that for the case of adiabatic wall with M_ = 10.31. These results suggest that wall cooling has

more influence on reducing turbulent mixing compared to compressibility effects. Overall,

compressibility reduces turbulent mixing and the reduction increases with M_. The near-wall

distributions of e+ as calculated by k-e model/1 are plotted in Figs. 4a - 4d. It can be seen that the

distributions are very similar to those shown in Ref. 27 for incompressible flows. The variations

of _ with M_ and @w/Or are very similar to those of k+. Again, maximum e+ is found at the wall

and a plateau in e+ is found in the range, 7 < Y+w< 13. This means that compressibility has little or

no effects on the near-wall behavior of e+. The exception is that increases in compressibility and

wall cooling tend to decrease _.

m

In general, the k-o model gives a very accurate prediction of -uv + near a wall. Its

predictions are as good as those given by k-8 model/1 (Figs. 5a - 5d). From this set of

predictions, the following observations can be made. Firstly, the peak of -uv + decreases with

increase IV/**and decrease O_O r. Secondly, as M** increases and O_O r decreases, the location of

the peak moves towards the wall. Thirdly, the rate of decrease of -u'v + in the range, 30 < ],'_ <

100, increases as lVI**increases. Finally, the asymptotic near-wall behavior of -h"v"+ is listed in

Table 1 for comparison. Much the same behavior is also true for -0v + whose distributions in the

near-wall region are shown in Figs. 6a - 6d. If the distributions of 0v + are plotted instead of -0v +,
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thecurveswill havethesameshapeasthoseshownfor -uv---+. Therefore,theobservationsdrawn

for-uv''-+am alsovalidforev+.

The distributions of k-+ and -u"-_ across the boundary layer arc compared in Figs. 7 and 8,

respectively. The results of the M_ = 10.31 case with adiabatic wall boundary condition are not

shown because k-c0 model prediction of this case has not been attempted due to the high IYee-

stream Mach number. In all cases shown, k-c0 model over-predicts k + and -uv''-+ in the outer part of

the boundary layer compared to the calculations of k-e model/1. The over-prediction extends

across the range, 0.2 < y/_ < 1.0. This is further evidence that the k-co model is not a suitable

model for compressible flat plate boundary-layer flows. Reduction of turbulence activities in the

outer part of the boundary layer is clearly evident when either compressibility or wall cooling

effects are present. The reduction increases as M_ increases. Therefore, it is expected that

turbulenceactivitieswillbe substantiallyreducedina flow where thefree-streamMach number is

largeand thewallishighlycooled.

The near-wall k budget for case 73050504 is plotted in Fig. 9. Other budget plots are not

shown because they are essentially similar to that given in Fig. 9. It can be seen that the k budget

bears a lot of similarity with that calculated for incompressible flows (see e.g. Ref. 27). The

additional compressible terms have negligible effect on the near-wall k budget. Therefore, the

assumptions made to derive the near-wall function _ in the dissipation rate equation are justified.

Again, viscous diffusion balances dissipation at the wall. This balance extends to about Y+w= 4

where turbulent diffusion and production become important. In the region, 4 <_Y+w<; 15, viscous

and turbulent diffusions, production and dissipation are equally important. Beyond y+ -- 15,

production and dissipation are in balance, just as in the case of incompressible flows.

Consequently, the near-wall turbulence behavior is very similar for both incompressible and

compressible flows.
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Accordingto Refs.25and27,Taylor seriesexpansionsabouty+ = 0 canbeassumexlfor

k+, -uv''-+ and-0v+. Forincompressibleflows,theexpansionsaxevalidupto aboutY+w" 7. This

rangemaynotbeapplicablefor compressibleflows. Nevertheless,suchexpansionsfor smally+

canstill beassumed.Withthehelpof (21)theseexpansionscanbewrittenas:

k+ = ak(Y+) 2 + bk(Y+w)3 + ..........

__-+ = auv(Y+w)3 + buy(y+) 4 + .......

_'-Ov+ = avo(y+)3 + bvo(Y+w)4 + .......

(-O,Oa)

(40b)

(_Oc)

where the a's and b's axe time-average coefficients that are functions, of x. A similar expansion can

be deduced for e+. Again, using (21), the definition of 8 and its wall boundary condition, the

expansion for e+ can be written as:

e+ = 2a k + 4bky + + ........ (41)

From these expansions, it can be easily deduced that k+2/E'+(y+) 2 = 0.5. Therefore, the asymptotic

behavior of k+2/e+(y+w)2 is 0.5 and is independent of M** and wall thermal boundary conditions.

The accuracy in which a model can predict this quantity is a reflection of the asymptotic

consistency of the model. Table 1 shows that k-e model/1 is indeed asymptotically consistent

while k-e model/2 is not as good.

The "a" coefficients can be determined from the calculations and their values are also listed

in Table 1 for comparison. It can be seen that ak varies with free-stream Mach number. A plot of

ak versus M** for the adiabatic wall boundary condition is shown in Fig. 10. The value of ak for

the incompressible case is taken from Ref. 27 and is plotted at M** = 0. Clearly, the trend is to

approach an asymptotic value for ak at high M**. This demease in _ is a cause for the decrease in

k for high Mach number flows (Figs 3 and 7). The physical reason is that compressibility tends to

hinder turbulence mixing. As a result, both turbulent shear stress and kinetic energy decrease
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significantlyasM**increases(Figs.3,5, 7and8). Sincee__ = 2a k according to (41), dissipation

at the wall is also dependent on M**. There is no clear trend for auv and av0. However, the values

of auv are consistent with that calculated for incompressible flows 27 and direct simulation data 35.

The value of av0 is essentially zero. Since there is no data available for verification, its correctness

is in doubt.

The inadequacy of the k-to model is further investigated by comparing its calculations with

cases where the free-stream Mach number is about 5 or less. These calculations are carried oat to

evaluate the applicability of the k-to model at low R o. The Ro for cases 53011302 and 5902(1105

are 5532 and 3936, respectively. Case 53011302 has adiabatic wall boundary condition and M** =

4.544 while case 59020105 has constant wall temperature and M** = 5.29. These Reynolds

number may be too low for the k-to model because it is not specifically formulated for low

Reynolds-number flows. In order to substantiate this point, the k-to model is used to calculate case

53011302 up to an R 0 = 14,950 and case 59020105 up to an Re = 14,000. These results and the

calculations carried out to the measured Ro's are plotted in Figs. 11 and 12 for comparison. The

log-law is also shown in Fig. 11 to illustrate the calculated log behavior of the compressible

boundary layers. It is evident that the k-to model performs better at high Re and the calculatexl log

behavior moves closer to that of the log-law (Fig. 11). The discrepancy between model

calculations and measurements is decreased substantially when Re is increased by a factor of about

three. For the cooled wall case, even though there is improvement, it is not enough to bring the

calculations to a closer agreement with measurements. There is still significant difference between

this calculation and that due to k-e model/1 (compare Fig. ld with Fig. 12a). However, there is

little or no improvement in the prediction of mean temperature (compare Fig. 2d with Fig. 12b).

Finally, the ability of the k-e models to predict skin friction coefficient over a range of M**

and wall temperatures is illustrated in Fig. 13 and Table 2. In Fig. 13, the variation of C_.f/lCf) i

with M** for the case of adiabatic wall boundary condition is shown. Here, (Cf) i is the skin

friction coefficient for an incompressible flow evaluated at the same Re and is determined to be
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2.73x 10-3. Thecalculationsshownarefrom k-emodel/1. BelowM**= 5, thecalculatedk-e

model/2variationof Cf/(Cf)i with M**isessentiallythesameasthatshownin thefigure.Thereis

aslightdecreaseof 1- 2%for M**beyond5. Thismeansthatbothk-emodel/1andk-Emodel/2

predictthesameCt/(Cf)i variationwithM**for adiabaticwallboundarycondition.Thepredictions

for thecooledwall casearenotasgood(Table2). Here,substantialerrorstartsto accumulateata

temperatureratioof aboutOw/Or --0.6. Theerroratthispointisabout3%butit quicklygrowsto

about9%at(gw/Or = 0.4andbecomesevenlargerasOw/Or decreases.This trendiscontrm'yto

previouscalculations13.Thedisagreementcouldbeattributedto theassumptionof aconstant

turbulentPrandtlnumber.If Prt --0.7 is assumed,thecalculationsarein betteragreementwith

data up to Ow/O r = 0.4, but beyond this point significant error in prediction still exists. The reason

could be a reduction of turbulent mixing as a result of a cooled wall. However, this effect has not

been appropriately accounted for in the models, particularly their near-wall behavior. In other

words, if highly cooled-wall flows are to be predicted correctly, heat fluxes should be modeled

separately rather than linking to momentum fluxes via a constant turbulent Prandtl number.

6.3 Discussion

The following observations can be drawn from the above analysis. Firstly, Morkovin's

hypothesis is valid up to a free-stream Mach number of about 5 for flat plate boundary-layer flows

with adiabatic wall boundary condition. This means that the effects of fluctuating density are

becoming more and more important as M** increases beyond 5. Secondly, the assumption of a

constant turbulent Prandfl number is not appropriate for cooled wall thermal boundary condition.

The reason is the reduction in mixing due to a cooled wall and this effect is not correctly accounted

for in a constant turbulent Prandtl number approach. Most likely a heat flux model is require_l if

the characteristics of cooled-wall compressible boundary-layer flows are to be predicted correctly.

Thirdly, it is important to model the near-wall flow correctly if the overall boundary-layer

characteristics are to be predicted with confidence. The failings of the k-o) model can be attributed

to the asymptotically inconsistent near-wall corrections implemented into the governing equations.
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Thispointissubstantiatedbythepresentk-Emodelcalculationswhereall additionalcompressible

terms in the turbulenceequationsare neglected. The resultsare in good agreementwith

measurementseventhoughtheydifferslightlyfromthepredictionsof themodelcalculationswhere

all theadditionaltermsareretained.In otherwords,anasymptoticallyconsistentnear-wallmodel

is moreimportantto thepredictionof compressibleboundary-layerflows thantheinclusionof

fluctuatingdensityeffectsin themodeledequations.Finally,thepredictednear-wallcharacteristics

areverysimilar to thosecalculatedfor incompressibleflows. In therangeof free-streamMach

numbertested,thecalculatednear-wallcharacteristicsareessentiallyindependentof Machnumber

andwall thermalboundarycondition.Verynearthewall,viscousdiffusionof k isbalancedbythe

dissipationof k. Beyondy+ = 15,dissipationis balancedby meanshearproductionof k. In

betweenthesetworegions,viscousandturbulentdiffusionof k, productionof k anddissipationof

k areof importancein thebudgetof k. Theadditionalcompressibletermsin thek-equationare

essentiallynegligiblein thenear-wallregionup to Y+w= 50. Perhaps, this is the reason why the

model also performs well when the additional compressible terms are neglected in the equations.
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7. Conclusions

The k and e equations for compressible flows are derived by assuming that there is no

dynamical similarity between the compressible and incompressible fields. Therefore, the

influences of fluctuating density on the mean and turbulence fields have to be accounted for hi the

modeled equations. This can be accomplished by first re-casting the exact k and e equations into

forms that are similar to their incompressible counterparts. In other words, the viscous diffusion

and dissipation functions have to be defined exactly like their incompressible terms. This

procedure gives rise to additional terms in the k and e equations. These terms depend explicitly on

compressibility and vanish when the fluid density becomes constant. One extra term in the k-

equation is related to fluid dilatation and can be interpreted as compressible dissipation. The others

are production terms that depend on the gradients of the mean pressure and mean viscous shears.

All additional terms are found to be relatively unimportant in the near-wall region, or 0 < Y+w< 50.

However, away from this region, they are quite significant compared to other terms in the

equations. This realization, therefore, allows the near-wall incompressible models to be extended

directly to compressible flows without modifications, while still maintaining the balance of the

modeled equations as a wall is approached. Models are proposed for the additional terms in the k

and e equations. The constants introduced by the new models are determined by calibrating the

calculations against measurements in compressible flows.

The near-waU two-equation model is used to calculate compressible flat plate boundary-layer

flows with different wall thermal boundary conditions and free-stream Mach numbers.

Comparisons are made with various mean flow measurements and with calculations of the k-co

model. Good agreement is obtained between the present calculations and measurements. In

particular, the log-law for compressible flows is recovered and the slope of the log-law is found to

be fairly independent of free-stream Mach number for the range, 0 < M** < 10, tested. However,

this is not the case for the k-o3 model. This particular model is formulated by assuming that

compressibility effects can be accounted for fully by the variable mean density alone. Therefore,
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theeffectsof fluctuatingdensityonturbulentmixingareessentiallyneglected.Furthermore,the

modelisnotinternallyconsistentasawall is approached.Consequently,its predictionof thenear-

wall flow is in errorandthis,in turn,leadsto anincorrectpredictionof theflow awayfrom the

wall. Thediscrepanciescanbeattributedto anear-waUbehaviorthatis notasymptoticallycorrect

andtotheneglectof fluctuatingdensityeffects.

Theimportanceof anasymptoticallycorrectnear-wallmodelis illustratedby usingthe

presentk-emodelminusall theadditionalcompressibletermsin theequationstocalculatethesame

experimentalflows. Again,goodagreementis obtainedbetweencalculationsandmeasurements.

The only disagreementscomein thepredictionsof the near-wallasymptoticbehaviorof the

turbulencequantities. Eventhen, thediscrepancyonly amoun_to a few percentageof that

calculatedbythek-emodelwithall additionalcompressibletermsincludedin theequations.The

calculatednear-wall turbulencestatisticsare internally very consistentand approachtheir

asymptoticvaluescorrectly. Furthermore,theyarefoundto be in goodagreementwith direct

simulationdataobtainedfor incompressibleflat plateboundarylayers.This impliesthatvariable

meandensityhaslittle or noeffectsin thenear-wallregionof boundary-layerflowswith free-

streamMachnumberupto 10. Therefore,thedynamicalfield in acompressibleflowbehaveslike

anincompressibleonein thenear-wallregion. Finally,theMorkovinhypothesisis foundto be

validupto afree-streamMachnumberof about5.
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Table 1. Asymptotic near-waU behavior of the turbulence properties.

Case M** Ow/O r Model ak auvxl04 avoxl07 k+/e+fv.+,.) 2

55010504 2.244 1.0 k-emodel/1 0.0987 7.168 -0.462 0.50

53011302 4.544 1.0 k-¢model/1 0.0844 6.160 -2.243 0.50

73050504 10.31 1.0 k-emodel/1 0.0787 6.830 4.550 0.50

73050504 10.31 1.0 0.0812 6.950 -70.4 0.51

59020105

59020105

5.29

5.29

k-e model/2

0.92 k-e model/1 0.0795 6.230 -6.823 0.50

0.92 k-e model/2 0.0801 6.290 -13.17 0.50

39



Table2. k-emodel/1calculatedskinfrictioncoefficientfordifferentwall temperature
atM**= 5.0 and Ro = 104 with a (Cf) i = 2.73 x 10-3.

O,g®r Calculated Cfx 10a

0.8 1.07

0.6 1.15

0.4

0.2

1.22

1.26

Calculated Co/(Cf) i Cf[(Cf) i from
van Driest II

0.392 0.392

0.421 0.434

0.447

0.461

0.495

0.580
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